
SIMION for the personal computer in reflection

David A. Dahl*

Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID 83415, USA

Received 24 April 2000; accepted 2 August 2000

Abstract

This article is a reflective overview of the origins, history, and capabilities of the ion optics simulation programSIMION for
the PC (versions 2.0–7.0) from the author’s perspective. It provides insight into the rationale and events that contributed to the
direction of the evolution and current capabilities of the program. The capabilities of version 7.0 are presented along with tests of
its computational accuracy. Future developmental areas are discussed. (Int J Mass Spectrom 200 (2000) 3–25) © 2000 Elsevier
Science B.V.

Keywords:Ion optics

1. Introduction

The various versions of the ion optics simulation
programSIMION for the PC (versions 2.0–7.0) have
gained wide usage within the mass spectrometry
community since first introduced in 1986. Although
the PCSIMION programs may have attained significant
visibility themselves, few descriptions concerning the
PCSIMION effort appear in the open literature [1]. This
article serves as a reflective overview of PCSIMION’s
origins, developmental history, philosophy, present
capabilities, and future directions from the author’s
perspective.

2. Origins of SIMION for the PC

The SIMION program originated in Australia in
1973. Don McGilvery created the originalSIMION

program while working on an undergraduate research
project for Professor James Morrison [2]. The
project’s goal was to design a double quadrupole mass
spectrometer with a common ionization volume for
isotope ratio measurements. This instrument was in-
tended to be a simple, inexpensive replacement for
dedicated, multidetector, sector mass spectrometers.
Unfortunately, the instrument did not perform as
expected, and McGilvery created the first version of
SIMION in order to simulate the ion motions in the
instrument and gain insight into the problems in-
volved. Detailed study of the source assembly optics
with the various versions of the program he devel-
oped, including one with three-dimensional (3D) sim-
ulation capabilities, uncovered intractable problems
with the common ionization volume.

In contrast, hisSIMION effort turned out to be a great
success. It played an integral role in his Ph.D. project
to build a mass spectrometer for the study of gas
phase molecular ions as well as in many other
instrument construction projects underway within the* Corresponding author. E-mail: dhl@inel.gov

1387-3806/00/$20.00 © 2000 Elsevier Science B.V. All rights reserved
PII S1387-3806(00)00305-5

International Journal of Mass Spectrometry 200 (2000) 3–25

Department of Physical Chemistry at Latrobe Univer-
sity during the 1970s.SIMION started out as a suite of
seven FORTRAN language, DEC PDP 11-20 pro-
grams that McGilvery gradually combined over the
years. New features, such as rf capabilities, were
added as the need arose. McGilvery made use of
SIMION’s rf capabilities in collaborations with Rick
Yost to study ion transmission after collision induced
fragmentation in quadrupoles. These simulations
helped provide the understanding needed for the triple
quadrupole instrument to gain rapid acceptance.

Moreover, McGilvery freely shared theSIMION

programs with the mass spectrometry community,
which greatly extended its general impact. During
McGilvery’s postdoctoral studies with Professor
McLafferty at Cornell University, during 1977–1980,
SIMION was there too. Peter Todd, one of McLafferty’s
students, took a copy ofSIMION with him to Oak Ridge
National Laboratory (ORNL) in 1980 [3]. The pro-
gram proved quite useful there and Hank McCowan
of ORNL added features such as ion trajectory mir-
roring and quadratic field near-axis cylindrical sym-
metry ion trajectory corrections. Oak Ridge also
freely shared its version ofSIMION with interested
researchers within the mass spectrometry community.

In 1983 Jim Delmore of the Idaho National Engi-
neering and Environmental Laboratory (INEEL) ob-
tained a copy ofSIMION during a visit to Oak Ridge.
Delmore usedSIMION to greatly improve his intuition
and understanding of ion trajectories within various
ion source assemblies in the instruments he used. This
naturally led to design improvements and the need for
higher resolution simulations. During the course of
this activity, Delmore hadSIMION ported from its
native DEC PDP environment onto a DEC VAX
computer to be able to work with larger potential
arrays on a faster machine. Refining (solving for
potentials) on the PDP-11 without a numerical co-
processor took three to four hours for a 4000 point
array. The VAX could refine a 20 000 point array in
a few minutes. Consistent with McGilvery’s estab-
lished tradition, Delmore also shared theSIMION VAX
version with other researchers.

However, access to enough CPU time and physical
(nonvirtual) memory on the VAX was often difficult

to obtain, causing Delmore to consider portingSIMION

to an IBM AT personal computer in 1985.

3. Birth of SIMION for the PC

It was at this point, in the summer of 1985, that I
began working with Jim Delmore at the INEEL. My
first task was gettingSIMION to run on an IBM AT.
Unfortunately, the IBM AT was a huge step down in
speed from the VAX. However, an IBM personal
computer was relatively inexpensive to buy, its CPU
time was free (once you bought the computer), it
could reside on a desk in the lab, and it offered the
potential for a more interactive user/program environ-
ment. The objective was to create a version ofSIMION

that was relatively easy to use, robust, versatile,
reasonably accurate, and acceptably fast on an IBM
personal computer. The first challenge was to make
SIMION run fast enough on the AT platform to be
useable.

SIMION uses the potential array approach to estimate
the electrostatic fields created by the defined electrode
geometry. A potential array contains a collection of
potentials arranged in a square [two-dimensional
(2D)] mesh of points. The volume represented by a
2D potential array is defined by the array’s symmetry
assumptions (either planar or cylindrical). Selected

Fig. 1. Potential array. Electrode points are represented by filled
squares and nonelectrode points are represented by shaded
diamonds.

4 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

array points can be designated as fixed potentials to
define electrode boundaries (geometry) as shown in
Fig. 1. The point density of the array, relative to the
electrode boundaries being defined, limits the simu-
lation accuracy (larger arrays normally simulate fields
better). The potentials of points outside of the elec-
trodes are determined by solving the boundary value
problem’s Laplace equation via finite difference
methods. InSIMION, this process is called refining the
array. Once an array is refined, ions can be flown
through its volume.

Applying finite difference methods to a boundary
value problem solution (in the simplest form) involves
estimating the value of each unknown point by the
average of its nearest four (2D) or six (3D) neighbor-
ing points. Successive scans, or iterations, through the
array of points gradually converges each point’s
potential to a stable solution value. The rate of
convergence to a solution can be enhanced by the use
of an over-relaxation technique [4] that multiplies a
point’s change in potential from one iteration to the
next by a factor between 1 (no over-relaxation) and 2
(unstable over-relaxation). Most boundary value
problems converge in the fewest number of iterations
with an over-relaxation factor of approximately 1.9
(or 0.9 as used bySIMION). Finite difference methods
use computer memory efficiently (e.g. one double
precision word per array point) and are computation-
ally robust. However, the time to refine an array by
finite difference methods is generally proportional to
n2 wheren is the number of points in the array.

3.1. Self-adjusting over-relaxation

The refining process is computationally intensive,
because it involves large numbers of floating point
additions and divisions (or multiplications). Speeding
up the refining process was the first order of business.
The version ofSIMION that Delmore obtained from
ORNL had a refine algorithm with lots of decision
statements in the inner loops. This approach mini-
mized the lines of code at the expense of slower refine
times. The refining algorithms were unrolled into
sequentially organized algorithms with no decisions
in the inner loops. The code was considerably longer,

but it ran dramatically faster. A study of the over-
relaxation process was conducted with one dimen-
sional models. Although over-relaxation values of
around 0.9 gave the fastest convergence, the quality of
the solution was often unsatisfactory, because of the
solution kinks (local roughness) that high values of
over-relaxation often introduced. Further study re-
vealed that these solution kinks could be smoothed by
beginning the refine with a low value (0.4) for
over-relaxation that was gradually increased to 0.9 in
the middle iterations of the refine and then gradually
reduced back to 0.4 as the solution neared the con-
vergence criteria. A self-adjusting over-relaxation
algorithm was developed that made use of an expo-
nential weighted historical memory factor approach
that automatically varied over-relaxation in the above
manner to smooth out the solution kinks while mini-
mizing the refine iterations required. These algorithm
modifications allowed an IBM AT, with a floating
point coprocessor, to refine 1600 point arrays in
approximately 100 s. Although this may seem dead
slow by current standards it was sufficiently fast to
justify a PC version ofSIMION.

3.2. Fixed distance step integration

Trajectory calculations were the next order of
business. The version ofSIMION obtained from ORNL
made use of trapezoidal rule integration with fixed
time steps set by the user. In practice, the user
decreased the time step until the ion trajectories did
not change significantly from run to run. Although
this is a very straightforward approach, applications
where ions are accelerated from fractions of an eV to
keV (e.g. ion guns) were a problem. Very short time
steps were required for stable ion trajectories because
of the high ion kinetic energies within the gun.
However, these short time steps wasted huge amounts
of CPU time in those regions where the ion’s kinetic
energy was very low (e.g. at the source). Algorithms
were developed to automatically vary the time step to
obtain fixed distance step integration. The user now
set the number of integration steps per potential array
grid unit. The default value of 10 steps per grid unit

5D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

was found to provide good ion trajectory solution
convergence while minimizing CPU time.

3.3. Interactive graphics interface

The third task was to add an interactive graphics
interface to PCSIMION to improve its ability to interact
effectively with the user. The IBM Professional
Graphics System CGI interface software was used
because it followed the international integer graphics
standard and provided device driver support for most
of the video monitors and printers available for IBM
computers. The new graphics interface only supported
two of the program’s functions: The first was viewing
and printing trajectory images, and the second was a
new function called “Modify” that allowed the user to
interactively define and modify electrode geometry
with the mouse. Although the graphics interface was
peripheral to many of the program’s functions it
provided the user with an easy way to define electrode
geometry and view/print ion trajectories (a big step
forward).

During its development, I used PCSIMION to
analyze and design the ion gun used in our SF6

auto-neutralizing beam experiments as well as for
other design simulations. These served to point out
where polishing and additional features (e.g. defined
magnetic fields) were needed. It is my opinion that the
quality of scientific computational tools directly ben-
efits when the creator remains a primary user, because
problems are easier to see when you are being
victimized by them.

The first PC version ofSIMION was finished in early
1986, and Jim Delmore was keen on making it
available to others. A manual was written and the
program was namedSIMION AT version 2.0. The name
reflected its PC platform and the fact that it was
actually my second iteration on the effort. Delmore
wanted a PCSIMION poster presented at the 1986 34th
ASMS Conference in Cincinnati. The poster was
prepared with great reluctance, because of my con-
viction that there must be many equivalent or superior
programs floating about within the community. Del-
more said no, and history proved him right! The
poster was mobbed, and we mailed upwards of 200

copies of version 2.0 during the next year. We gave
the copies away in the establishedSIMION tradition,
and it was very gratifying to see version 2.0’s level of
acceptance as well as have the opportunity to interact
with the growing PCSIMION user community and hear
their suggestions.

4. FORTRAN versions of PCSIMION

The interest in version 2.0 convinced me that an
effort to further expand and improve the capabilities
of PC SIMION was well justified (success had chased
me down and run me over). Over the next four years,
thanks to part-time support from the Department of
Energy’s (DOE) Basic Energy Sciences Chemistry
Division (BES Chemistry), versions 3, 4, and 5 were
released. These versions of PCSIMION retained the
FORTRAN language of McGilvery’s originalSIMION,
but little of its original code remained. The following
briefly highlights the significant new features in each
version.

4.1. Versions 3.0/3.1

Versions 3.0/3.1, released in 1987, had new algo-
rithms to address array refining and ion trajectory
calculation issues. At this point, most of the simula-
tion time was spent changing the potentials of elec-
trodes and then waiting for the array to re-refine
before ions could be flown. The additive solution
property of the Laplace equation provided the answer.

4.1.1. Fast adjust potential arrays
If a separate potential array were created, refined,

and saved for the points defining each individually
adjustable electrode (with all the other electrode
points in the array set to zero potential), the array
solutions for individual electrodes could then be
combined by the appropriate scaling and summation
to create the resulting composite field array. Algo-
rithms were developed to automatically create and
refine the individual adjustable electrode arrays as
well as to adjust the potentials of the composite field
array. The result was PCSIMION’s fast adjust array

6 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

capability, and it provided a dramatic speedup. Elec-
trode potential changes that previously required tens
of minutes to re-refine now took only a few seconds to
read, scale, and combine from the hard drive, once
one had endured the refine time required for creating
the individual electrode solution arrays.

4.1.2. Fourth order Runge-Kutta integration
Although the variable time step integration algo-

rithm used in version 2.0 had resulted in significant
time savings, ion trajectory accuracy issues remained
that required a complete rethinking of the algorithms
used for calculating ion trajectories. It was clear that
a higher order numerical integration method was
needed. A fourth order Runge-Kutta method [5] was
adopted because its higher accuracy better matched
the accuracy of refining and it was compatible with
the use of variable time steps.

Various methods for more accurately deriving the
potential gradients from a potential array were eval-
uated including polynomial approaches. The adopted
approach made use of a 16 point (2D) copy of the
array region that surrounds the ion (see Fig. 2). A four
point spider of60.5 grid unit extends from the ion’s
current location. The potential for each of the four
endpoints of the spider is determined by linear inter-
polation using the four array points that surround it.
The potential differences between horizontal and
vertical spider endpoints are used to estimate thex

andy potential gradients and the average of the four
spider endpoint potentials estimates the potential at
the ion’s location. This approach proved a good match
with the accuracy and order of the refined arrays, as
well as being very robust even near electrodes, ideal
grid discontinuities, and array boundaries (via linearly
extrapolated grid point potential estimates).

Simplified (and faster) algorithms for automati-
cally adjusting the variable integration time steps
based on desired ion step length (d), current velocity
(v), and acceleration (a) were adopted: (1) if the ion’s
acceleration and velocity are both zero: kill the ion
(splat); (2) if the ion’s acceleration is zero:tvÞ0 5

d/v; (3) if the ion’s velocity is zero:taÞ0 5 sqrt(2d/
a); (4) if the ion’s acceleration and velocity are both
nonzero tstep 5 tvÞ0taÞ0/(tvÞ0 1 taÞ0). It was
found that a default value of one grid unit for the
integration distance step (d) provided a good compro-
mise between accuracy and speed with the Runge-
Kutta method.

However, conservation of energy remained a prob-
lem at velocity reversals, ideal grid discontinuities,
electrode boundaries, and array boundaries. Version
3.0 added a time step correction based a quantity
called stop length:

Slength5 v2/~2a!

Although stop length seldom indicates the ion’s actual
stopping distance (e.g. magnetic accelerations) it is a
very good indicator of the rate of trajectory curvature.
The time step computed above is reduced by up to a
factor of 10 by stop length:

Slength. 10, tstep5 tstep

1 , Slength, 10, tstep5 0.1tstepSlength

Slength, 1, tstep5 0.1tstep

Although the stop length approach improved conser-
vation of energy at velocity reversals, it did not
effectively address the issues created by ideal grid
discontinuities, electrode boundaries, and array
boundaries.

Fig. 2. Four point spider uses linear interpolation to estimate the
potential of each of its four end points.

7D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

4.1.3. Binary boundary approach paradigm
The numerical integration process needed to auto-

matically detect these problem events and use a
general strategy to compensate for them (e.g. a white
cane for the blind man). The binary boundary ap-
proach paradigm was found to be an excellent com-
pensation strategy. Programs, much like many of us,
can generally detect an event quite easily after it has
happened (e.g. stepping off a cliff). However, unlike
humans, a program can always leap back from the
abyss. When a binary boundary approach is used, the
program leaps back from a travesty (hitting an elec-
trode), halves the allowed distance step and tries
again. Assuming the binary boundary approach pro-
cess is persistent, one can approach the boundary
event (e.g. a velocity reversal) arbitrarily close with-
out actually crossing it. However, the adoption of a
minimum allowed distance step (e.g. ten thousandths
of a grid unit) will ultimately force the event to occur
while minimizing the introduction of energy conser-
vation errors.

4.1.4. Coefficient of variation of acceleration
controls

Although events such as hitting an electrode,
entering or leaving a potential array, and velocity
reversals were straightforward to detect, the detection
of strong field curvatures and discontinuities (e.g.
ideal grids) required calculating the coefficient of
variation of acceleration (Cv) in thex, y, and z
directions using the four Runge-Kutta acceleration
terms. When the Cv term in any one direction exceeds
a trigger value set by the user adjustable trajectory
quality parameter, the binary boundary approach is
invoked until the greatest Cv value reduces below the
trigger level or a minimum allowed distance step
forces the ion past the event threshold. Upon passing
through a binary boundary approached event (e.g. an
ideal grid discontinuity), the distance step is subse-
quently doubled each iteration until the nominal
distance step is restored (e.g. one array grid unit) or
another binary boundary event is detected.

PC SIMION versions 3.1–7.0 have successfully em-
ployed these strategies to obtain accurate ion trajec-
tories with a minimum of integration time steps. Fig.

3 shows an ion’s trajectory in a linear reflection field
with an ideal grid creating a central electrostatic field
discontinuity. The potential energy of the ion is
conserved to within one part in 107 after 14 cycles of
reflection using the default settings inSIMION 3D
version 7.0.

4.2. Version 4.0

Although versions 2.0–3.1 proved to be quite
useful, they also whetted the appetite for more capa-
bilities. The most desirable capability would be full
3D asymmetrical simulations. However, a moderately
useful 1003 100 3 100 point 3D array would re-
quire 10 MB of RAM for array storage. Unfortu-
nately, the PCs available in 1988 were PC, AT or PS/2
class machines with 640 KB memory limitations.
Thus capability enhancements in version 4.0 were
limited to features that would still allow it to run in
640 KB (with extensive overlays).

4.2.1. User programming
Version 4.0 introduced the significant features of

user programming and enhanced ion trajectory visu-
alizations. User programming significantly increased
the power and versatility of PCSIMION by incorporat-
ing a single pass pseudocompiler that could read user
created files of programming instructions written in a
HP calculator style reverse polish notation (RPN)
language. These user programming instructions were

Fig. 3. Conservation of energy test in a linear reflection field made
up of edge electrodes and a center ideal grid. Ion trajectory velocity
reversal peak heights remain constant if energy is conserved.

8 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

automatically incorporated in the ion trajectory calcu-
lations. PCSIMION became user extensible, allowing it
to be used for applications well beyond those readily
apparent to the author.

There were four classes of user program files that
could be used in combination during ion trajectory
simulations. The first user program type was a .FAC
extension file that was used to multiply the electro-
static fields and potentials by a user defined factor.
Because the user had access to parameters such as the
ion’s time of flight, these types of user programs
could be used to create simple rf fields in much the
same manner as the sinusoidal rf feature in McGil-
very’s originalSIMION.

The second user program type was the .ELE
extension file that allowed the user to adjust the
potentials of fast adjust electrodes as the ions flew.
SIMION dynamically fast adjusted the 16 point copy of
the array region around the ion using potentials passed
back by the .ELE user program. Memory swapping
algorithms were incorporated to automatically load
the appropriate regions of the needed potential array
solution file images from disk into RAM to speedup
the process as much as possible. The .ELE user
programs added real power to PCSIMION, because fast
adjustable electrode potentials could be varied inde-
pendently from within a user program. This allowed
PC SIMION to be used in time-of-flight (TOF) and
simplified Fourier transform mass spectrometry
(FTMS) simulations.

The third user program type was the .AR? exten-
sion file that allowed the user to explicitly define the
electrostatic and/or magnetic fields in up to ten user
defined regions of the potential array. The .AR? user
programs allowed arbitrary analytical expressions to
be used to define electrostatic and magnetic fields in
ion trajectory simulations.

The fourth user program type was the .XX? exten-
sion file that allowed the user to control the ion’s
position, velocity, and fate within up to ten user
defined regions of the potential array. These user
program types were most useful for killing ions,
forcing neutralization or fragmentation, and other
similar stunts.

When combined, these user programs served to

allow PC SIMION to attack whole new classes of ion
simulation problems (e.g. TOFs, bunchers, quadru-
poles, ion traps, and simple FTMS simulations). Also,
user programs allowed the user to inject much more
influence and imagination into the ion trajectory
simulations, providing the appropriate levels of
knowledge and ambition were applied.

4.2.2. Enhanced trajectory visualizations
The ability to simulate a broader range of problems

added new challenges to visualizing the results. Both
isometric 3D andzy views were added to the tradi-
tional xy trajectory view. This allowed complex 3D
ion motions (e.g. ion motions in a quadruple) to be
visualized, significantly adding to PCSIMION’s capac-
ity for improving insight and understanding.

However, it is my belief that the potential energy
surface display was the most significant visualization
feature added to version 4.0. Seeing an ion’s trajec-
tory is one thing. Understanding it is quite another.
This gulf between ion trajectory visualization and
understanding has served to give ion optics an aura of
mystery for many (myself included). Contours of the
potential field can be helpful, but contour maps are
not the natural way we look at the world, and thus
often prove more confusing than enlightening. Ion
motions in electrostatic fields behave much the same
way (though not identically) as golf ball motions on
sloping surfaces. In the early days of vacuum tube
design, rubber sheets were stretched over electrode
shapes set to heights that represented their potentials.
If the slopes were relatively mild, the trajectories of
the balls rolled on the rubber sheet physical model
could simulate ion/electron trajectories fairly accu-
rately. The concept of the potential energy surface is
really the reverse transformation, because the calcu-
lated ion trajectories are projected on a 3D surface
that represents the rubber sheet model of the potential
array.

Suddenly the “why” of the ion’s trajectory be-
comes apparent (see Fig. 4). The upper illustration
shows a 2D (xy) view of ion trajectories through an
einzel lens. Note that the contours are not very helpful
in understanding why the decel/accel einzel lens is
focusing the ions. However, the potential energy

9D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

surface view (below) shows that the center electrode
creates a saddle retarding field. Ions entering the
einzel lens decelerate in a weak diverging field that
gradually becomes a stronger converging field as they
approach their lowest velocity in the center of the
lens. As the ions continue, they are accelerated in a
strongly converging field that gradually changes to a
weak diverging field as they exit the lens. The net
effect is a converging focus, because the ions have
spent the most time in a converging field. It is now
more apparent why the ion trajectories have focused,
because the trajectories have been displayed in a
framework more consistent with how our minds see
and interpret other roughly equivalent physical phe-
nomena. However, the real benefit of potential energy
surfaces is that the gain in intuitive understanding
helps the user more knowledgeably predict the effects
of changes in potentials or electrode geometry. For
many of us, potential energy surface displays have
removed some of the mystery from ion optics.

4.3. Version 5.0

The advent of the Intel 386 processor provided
IBM compatible PCs with true 32 bit addressing
capabilities. It was now possible, in principle, to
support million point arrays assuming that the com-
puter had 16MB of RAM (then very expensive) and a
32 bit DOS extender to allow program access to this
memory. Version 5.0, created in 1989, was the first

tentative step toward a 3D asymmetrical version of
PC SIMION. It was a FORTRAN based program that
supported 2D arrays of up to one million points.

Unfortunately, it also served to illustrate emphati-
cally that the refine times of classical finite difference
algorithms are proportional to the number of array
points squared (then2 limitation). Although this
version was never formally released, it did have a
number of heroic volunteer users who were desperate
for larger 2D arrays. Refine times for million point
arrays often were measured in terms of days to weeks.
Clearly other refining approaches were needed to
make a 3D asymmetrical version viable on anything
short of a supercomputer.

5. C versions of PCSIMION

My personal vision for PCSIMION’s future revolved
around creating a highly interactive program that
could project 3D images (instances) of several 2D
and/or 3D electrostatic and magnetic potential arrays
into an arbitrary 3D volume allowing, in principle, the
simulation of entire instruments. Version 5.0 was
clearly a misstep toward the goal of an asymmetrical
3D PCSIMION, but it did serve to point out additional
limitations beyond the impact ofn2 potential array
refine times for very large potential arrays. Although
versions 2.0–5.0 had functioned acceptably with a
CGS integer graphics standard, accurately displaying
ion trajectories and potential arrays within volumes
with scales that might vary from microns to kilome-
ters clearly would require a floating point vector
graphics capability. Additionally, FORTRAN by its
nature did not provide the flexibility (recursion),
constructs (pointers) or the dynamic memory alloca-
tion capabilities required to support interactive user
interfaces. The C programming language, in contrast,
was much better suited to the diverse computational
and interface requirements that the envisionedSIMION

3D would require.

5.1. PCSIMION’s graphics interface development

Fortuitously, in early 1990, our group needed to
create a unique data system to support a new pulsed

Fig. 4. Comparison of a 2D trajectory view (top) with a potential
energy surface view (bottom).

10 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

extraction quadrupole secondary ion mass spectro-
metry (SIMS) instrument [6]. This provided the op-
portunity for me to concentrate on a different but
potentially related problem of user interfaces while
allowing thoughts on then2 refining problem to
slowly percolate. After looking at how the then
available 16 bit Windows GUI (graphics user inter-
face) might support our data system needs, it became
apparent that creating a more optimal GUI for the
SIMS data system that also could be used in future
versions of PCSIMION would be highly desirable.

5.1.1. Floating point vector graphics
The subsequently developed GUI used a floating

point vector based graphics GDI (graphics develop-
ment interface) as opposed to Windows integer pixel
based GDI. An integer pixel graphics image is defined
in terms of pixels (dots) that are incrementally sepa-
rated. A floating point vector graphics image is
defined in terms of vectors (line segments). Both
approaches have their merits. Integer pixel graphics is
naturally more oriented to the organization of video
displays. Floating point vector graphics is more ori-
ented to the high resolution capabilities of graphics
devices such as flatbed plotters and laser printers
using languages such as PostScript, HPGL, HPGL/2,
and PCL5 to process floating point vectors at the
device level for high accuracy hard copy. A floating
point vector strategy was adopted, because images
defined by floating point vectors are scalable without
loss of accuracy and can be easily converted into the
pixel format of video displays.

The new GUI’s floating point vector GDI used a
reduced instruction set configuration (RISC) to speed
development and improve portability. Drawing com-
mands were limited to a small set of relatively high
level calls that could, in principle, support video
accelerators (e.g. dot, line, rectangle, translucent rect-
angle, and label). Unlike Windows, commands such
as color and drawing mode are consistently applied to
each drawing command.

5.1.2. Graphics device driver issues
All graphical environments must face the issue of

device drivers. In the GUI’s case, there was the need

for video display and printer support. The IBM
Professional Graphics Toolkit CGI package used in
the FORTRAN versions of PCSIMION made use of a
specific device driver for each video card and printer.
This approach requires lots of device drivers and
development time (often by the peripheral manufac-
turers themselves). What was needed was a way to
create more universal video and printer device driv-
ers.

It turned out that many video cards used similar
addressing strategies based on the selected display
resolution. The trick was to determine the precise
addressing strategy required for each resolution sup-
ported by a particular video board. Fortunately,
VESA, the Video Electronics Standards Association
had recognized this problem and promoted the use of
a VESA bios standard among its membership. The
VESA bios allowed programs to interrogate a video
card about its available resolutions and addressing
strategies. This allowed the development of a single
video device driver for the GUI that automatically
recognized and supported the higher resolutions of
video cards having the VESA bios extensions.

The issue with printer output was more complex,
because there were a huge number of printers, each
with its own native language and/or special software
features. After reflecting on the problem I decided to
write generalized printer language drivers instead of
printer device drivers. Individual printer language
driver support was provided for PostScript, HPGL,
HPGL/2, and PCL5. These generalized printer lan-
guage drivers could support many plotters and laser
printers. Moreover, these drivers output floating point
numbers directly to the printer or plotter for maximum
hard copy quality. Unfortunately, this solution ex-
cluded inexpensive raster printers to the chagrin of
many PCSIMION 6.0 users (an issue rectified inSIMION

7.0).

5.1.3. Graphic object oriented GUI
The adopted GUI architecture uses the notion of

layers of graphical objects. Graphical objects are
parent–child related based on their layering (from top
to bottom). An object’s parent is the first object lying
immediately below it that entirely contains it. The

11D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

screen object acts as the ancestor for all other graph-
ical objects. When an object is redrawn all of its
descendants are automatically drawn in layered order
from back to front. Likewise, when an object is
deleted, all of its descendant objects are also deleted,
and its parent object and its remaining descendents are
subsequently redrawn.

All active graphical objects are maintained as data
structures (holding values and pointers to values,
strings, and functions) in a double linked heap list to
facilitate their dynamic object creation and deletion.
Unlike Windows, which uses a messaging paradigm,
the GUI makes use of a recursive input poling and
object commanding paradigm. Communication with
objects (e.g. a draw yourself directive) is very effi-
cient. To draw a graphical object and its descendants,
a pointer to its structure is passed to the GUI’s draw
function. The draw function then gets a pointer from
the object’s structure to the object’s actual drawing
function and calls this function passing it the pointer
to the object’s structure. After the object’s redraw is
complete, the draw function proceeds to find and
redraw each of the object’s descendants in layer order
using the double linked heap list. In contrast, a
message paradigm as used in Windows, sends mes-
sages to each child window in the appropriate order
and waits for the message to be processed, redrawing
to occur, and the message conformation before pro-
ceeding. Although the message paradigm is very
flexible, it often leads to a form of communication
chaos when a large number of child windows (ob-
jects) are involved (a bedlam of messaging). The GUI
takes a much more regimented and efficient approach
by being able to identify and call any selected object
function by directly using the appropriate function
pointer stored in the object’s structure.

This graphical object oriented approach has proven
efficient and powerful. Object structures contain a
collection of function pointers to selectively call when
entering and leaving the object, to draw and position
the object’s cursor, to draw the object itself, and to
access the actions that the object supports, to name a
few. Other pointers in the structure are used to
reference the object’s specific and general help
screens. The object’s structure also holds values that

define its size, location, color, and other features.
Thus when the Print button in the View function is
clicked in PCSIMION 6.0 or 7.0, the GUI’s general
print function is passed a pointer to the graphical
object that is actually displaying the current ion
trajectory view inside the window, and the print
function automatically creates the additional objects
that support printer selection, output controls, user
annotations, and the actual printing process. Inciden-
tally, printing makes use of a dual output port ap-
proach in which the object is told to redraw itself and
its vector drawing commands are automatically sent
to both the designated printer and the video display (to
indicate printing progress).

5.1.4. Application to data systems
Over the years, many GUI based data systems have

been developed for our group’s quadrupole and ion
trap SIMS instruments. They have proven to be
robust, flexible, and easy to use. The flexible graphi-
cal object nature of the GUI has allowed the creation
of specialized graphic objects such as panel objects
(for numerical entry) and single button window ob-
jects (for simultaneousxy direction window scrolling)
that enhanced the interactive nature of the SIMS
instrument data systems (Fig. 5). Moreover, the use of
graphical object structures containing function point-
ers supports dynamic object inheritance capabilities.

Fig. 5. PCSIMION 7.0 View window with potential energy surface
of an Einzel lens.

12 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

Thus the spherical view control object (shown in Fig.
5) is first created as a simple cover surface object that
has its function pointers subsequently changed to
reference functions tailored to support the required
display and controls needed for spherical view control
and display.

5.2. Version 6.0

By the fall of 1991 the effort to develop the GUI
and the first pulsed extraction SIMS data system had
largely come to closure, and my focus returned to PC
SIMION and its n2 refining problem. Version 3.0 era
experience had demonstrated that when an array was
refined, doubled in size, and refined again succes-
sively, the total time spent in the array refining
process was proportional to the number of points in
the final array’s size. This strategy became the rec-
ommended approach in PCSIMION manuals to avoid
the penalties ofn2 refine times. What was needed was
a way to successively halve the array’s visible points
down to a size that refines quickly and then double
and refine the array’s number of visible points suc-
cessively until the full array was visible and refined.

Although this approach appeared relatively
straightforward, it was not the same as doubling and
refining a potential array successively. In the latter
case, the electrode geometry of the array remains
unchanged by successive doubling. However, in the
former case, controlled point visibility via halving
leads to point invisibility. If some of the invisible
points are electrode points, the refining process does
not see them, and their contributions to the potential
field remain unaccounted for until these points be-
come visible as the number of skipped points is
reduced. A simple point skipping approach that ig-
nores this, generally suffers enough refine time losses
when the skipped electrode points regain visibility to
fully offset any expected time savings.

5.2.1. Skipped point refining
An effort was initiated to develop a more time

efficient refining algorithm that could include the
effects of invisible skipped electrode points early in
the solution process. This effort led to the develop-

ment of the skipped point refining algorithm. Skipped
point refine times are roughly proportional ton for
arrays that are relatively close to square or cubic. Fig.
6 compares how the refine times increase (on a 400
MHz Pentium II) as the size of the potential array
shown in Fig. 1 is successively doubled. It demon-
strates how the skipped point refining algorithm can
dramatically improve refine times as array size in-
creases.

Skipped point refining makes use of powers of two
point skipping, a rather direct approach that becomes
very complex in practice. This approach initially
refines the smallest practical array size by skipping
points (point skipping5 2skip level), estimates the val-
ues of intermediate points, doubles the array density,
and then refines again. The process continues until no
points are being skipped (the final refine). The
skipped point algorithm attacks the invisible electrode
point problem by scanning for and flagging any
skipped electrodes at the beginning of each level of
skipped point refining. The refining algorithm now
knows which points have one or more invisible
electrode points near them. These special points are
refined by including the effects of the invisible elec-
trode points by a normalized inverse distance weight-
ing function that converges properly for linear gradi-
ents. This approach, combined with special
compensations for irregular shifts in array boundaries

Fig. 6. Example of the difference in refine times between skipped
point refining and the over-relaxation methods used in earlier PC
SIMION versions.

13D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

as skipping changes, makes for a very complex
refining algorithm, but one that is dramatically faster
for large arrays than conventional finite difference
methods. Skipped point refining methods permitted
version 6.0 to support array sizes up to 10 million
points. This was a good match with personal com-
puter capabilities in 1995.

5.2.2. Ion optics workbench
Although skipped point refining was the critical

first step in making a 3D version of PCSIMION

possible, many other issues remained to be resolved.
To successfully simulate more complex 3D problems,
including complete instruments, the notion of an ion
optics workbench volume was adopted. The maxi-
mum size of this simulation volume was limited to61
km (8 km3), because double precision floating point
numbers on Intel compatible personal computers have
approximately 15 digits of precision, and 1 km to 1
mm was about the maximum workable range (109)
that would still conserve acceptable integration accu-
racy for ion trajectories.

The ion optics workbench volume holds virtual 3D
images of potential arrays that are orientated, scaled,
positioned, and projected as array instances within the
volume. 2D arrays are converted to 3D images ac-
cording to their symmetry. Thus a 2D cylindrical
array becomes a 3D cylindrical volume of revolution
when projected into the workbench volume. Unlike
the prior 2D versions (2.0–5.0), the 3D versions of PC
SIMION (6.0–7.0) can project up to 200 3D images of
potential arrays into the ion optics workbench simu-
lation volume.

The primary challenge faced by this approach was
providing algorithms to visualize 3D array images and
ion trajectories in ways that were highly interactive
(even when ions were flying), flexible (2D and 3D
volume zooms), and user intuitive. For example, one
would like to be able to easily cut away portions of
array images to see details and ion trajectories inside
(see Fig. 7). Traditional computer graphics polygon
rendering methods normally require powerful graph-
ics engines to be highly interactive. Moreover, these
methods do not naturally support the interactive
cutting away of portions of images to see inside. This

led to the development of a set of isometric graphics
algorithms to achieve the desired interactive 3D
viewing within the personal computer performance
envelope.

5.2.3. Visualization methods
The isometric graphics algorithms take advantage

of the 3D cubic mesh nature of projected potential
array images to obtain fast and efficient hidden line
removal. Assuming that the image of an array is
integrally aligned with the workbench coordinate
system (each array axis is parallel to a workbench
coordinate axis), array points are naturally positioned
in bore lines (deeper points are directly inline with the
points above them). This is true for all 2D views and
also for the 8 possible diagonal isometric views. To
find the highest visible electrode/pole point in a bore
line, one need only start at the highest possible array
point in the chosen bore line (closest to the observer)
and descend down the bore line until the first elec-
trode/pole point is encountered. When the first visible
electrode/pole point is encountered a quick check is
made for its connections to other adjacent electrode/
pole points. This information is then used to rapidly
create full screen visualizations as illustrated in Fig. 7
(drawing time> 1 s–400 MHz personal computer). A

Fig. 7. Example of using the cutaway viewing capabilities to view
ion trajectory focusing within an ion extraction lens assembly.

14 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

sampling-style bore line algorithm is employed when
the array instance is not integrally aligned with the
workspace.

This approach facilitates the creation of cutaway
views by allowing each bore line search to start at the
front surface of the appropriate cutaway plane. More-
over, the option of skipping (not testing) one or more
adjacent bore lines allows the adjustment of image
quality so that a simpler (less detailed and faster
drawn) image of an array can be automatically drawn
as the user zooms away from an array’s image, or
when the user adjusts the drawing quality manually.
The bore line strategy also facilitates hidden line
removal of ion trajectories.

In order to take full advantage of these visualiza-
tion capabilities version 6.0 was developed as a 32 bit
MSDOS extended memory GUI application that
would run in both MSDOS and Windows environ-
ments. Many of the GUI’s graphical objects, such as
panel objects and single button window objects,
provide more interactive capabilities for programs
similar to SIMION than the roughly equivalent Win-
dows controls.

For example, in Fig. 8,SIMION’s view screen shows
ion trajectories in a cutaway view of a 3D potential
array. At the lower right corner of the window is a

small button. This button can be used to scroll the
view in thex or y direction by placing the cursor on
the button, holding down a mouse button, and moving
the mouse in thex or y direction. Advanced features
such as 3D isometric mouse pointing are performed in
much the same manner asx or y scrolling. However,
unlike 2D scrolling, when the mouse is moved in one
of the three isometric directions the cutaway plane for
that direction of motion automatically moves, track-
ing the mouse’s motion. This provides a quick inter-
active way to obtain or adjust cutaway views.

As discussed previously, PCSIMION’s visualization
software uses floating point vector graphics to permit
a wide range of workbench volumes from a cubic
micron to a cubic kilometer to be viewed full screen.
This and the strategy of nested 3D volumes is em-
ployed to allow the user to easily define a bi-
directional path of zoom volumes to obtain the desired
inner volume of the workbench for study. 3D zoom
volumes can be viewed in isometric, 2D surface, or as
potential energy views of selected 2D surfaces (see
Fig. 9). Potential energy views remain a very power-
ful component of PCSIMION, because they provide
highly intuitive representations of how electrostatic
fields act to create the ion trajectories.

5.2.4. Geometry definition language
A solids modeling language and associated com-

piler were developed to support the complex geome-
try definition requirements of 3D arrays that went
beyond the capabilities of the interactive array defi-
nition/modification function (Modify) within PC
SIMION. The solids modeling language employs a
nested structure of commands that define the fill

Fig. 8. Illustration of cutaway clipping via the use of the single
window button isometric pointing capabilities (lower right corner).

Fig. 9. Potential energy surface view of ion trajectories in Fig. 8.

15D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

volumes or volumes of revolution in terms of collec-
tions of inclusion and exclusion volumes defined by
Boolean combinations of volume primitives (e.g.
circles, spheres, parabolas, points and multiple line
segments).

Files containing these geometry definitions are
converted by a recursive compiler into a 3D heap
structure that projects the solid geometry definitions
into potential array geometry. The recursive nature of
the compiler and the 3D heap structure it generates
allows arbitrarily complex (virtual memory limited)
geometry files to be processed. Geometry file debug-
ging is facilitated via extensive error checking and
interactive display of the generated potential array
geometry.

The user can selectively map the same geometry
definitions into either 2D or 3D arrays using different
array grid densities as modeling requirements dictate.
Fig. 10 shows a cutaway view of a complex high
temperature SIMS extraction lens generated on a
0.010 in. grid spacing (a 35 million point 3D array
using version 7.0).

5.2.5. Magnetic potential arrays
The ability to project images of multiple potential

arrays into the workbench volume provided a rela-
tively painless opportunity to extend magnetic simu-
lation capabilities by adding support for magnetic

potential arrays. Magnetic potential arrays make use
of the same array defining and refining capabilities as
electrostatic arrays. The units of magnetic potential
are defined to be gauss3 grid units (or Mags). Mags,
a contrived unit for magnetic potential, is very con-
venient because its gradient in array coordinates is
gauss. This means the magnetic fields in magnetic
arrays are independent of array scaling in workbench
coordinates (useful).

However, magnetic potential arrays are not as
simple as electrostatic arrays. Although conductors
conserve electrostatic potential along their surfaces, it
is not very likely that a truly constant magnetic
potential will be maintained along a pole face because
of magnetic circuit geometry and permeability issues.
Although magnetic potential arrays clearly do not
make PCSIMION a magnetic circuits program, they can
accurately calculate magnetic fields if the values of
magnetic potential are defined accurately along the
surfaces of the magnetic poles. On the other hand, if
the magnetic field is known, the user programming
capability described below can be used with analytical
expressions for defining magnetic fields in the pro-
jected volume of a magnetic array or the array
variables capability of version 7.0 can be used to
project interpolated magnetic field estimates from
measured data.

5.2.6. Instance order
Ion trajectories are calculated in workbench coor-

dinate space where 3D images (or array instances) of
electrostatic and/or magnetic potential arrays have
been projected. Array instance data is maintained in a
list, and PCSIMION uses the array instance’s order in
the list to resolve overlapped instance conflicts by
always looking upward from the end of the list and
using the first electrostatic and magnetic instances
encountered that currently contain the ion. Ions can be
flown separately (as in previous versions) or simulta-
neously in groups with ion trajectories displayed as
either lines or moving dots. Flying ions in groups
often serves to help visualize and understand the ion’s
relative motions and interactions.

Fig. 10. Cutaway view of a 35 million point 3D array that simulates
the extraction optics for a high temperature SIMS instrument.

16 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

5.2.7. Charge repulsion algorithms
Although PCSIMION does not support Poisson style

space-charge calculations, its capability to fly groups
of ions simultaneously has enabled the implementa-
tion of algorithms for interactively estimating the
onset of charge repulsion effects via three methods.
Each of these methods allows the user to change the
charge, factor, or current (depending on method) as
the ions fly to help determine when the onset of
charge repulsion effects starts impacting the ion
trajectories.

The first method is called Beam repulsion (for use
with ion beams) in which each ion is considered to
represent an infinite line of charge (a 1/r effect). The
total user specified beam current is allocated to each
ion’s line of charge in the group according to charge
weighting factor parameters. Ions are flown using
space coherent integration. This is accomplished by
using ion number one (located in the center of the
beam) as leader of the pack. At each time step for ion
number one, a plane is computed that contains the ion
and is normal to its velocity. This plane is then used
to control the time steps of all other ions so that they
will fall within the plane to preserve the line charge
nature of the beam repulsion simulation.

The second method is called coulombic (or ion
cloud) repulsion (a 1/r2 effect). Each ion is allocated
a portion of the total user specified charge (in cou-
lombs) according to charge weighting factor parame-
ters. Ions are flown using time coherent integration
(the normal method for groups of ions).

Factor [or separated ion(s)] repulsion is the third
method (a 1/r2 effect). Each ion acts as a multiple (or
factor $1) of its charge allocated via charge weight-
ing factor parameters. Ions are flown using time
coherent integration as in coulombic repulsion above.

In each charge repulsion estimation method, an ion
represents a collection or cloud of charged particles. If
for some reason an ion found itself in the middle of
the cloud of another ion it should have no forces on it.
However, if the standard 1/r2 (factor and coulombic
repulsion) or 1/r (beam repulsion) distances were to
apply, then forces would be infinite and everything
would blow up. PC SIMION compensates for this
problem by using radius factors that are 1/r2 or 1/r if

r is large and diminish to zero asr approaches zero.
The method used closely models the effect of having
the ion near a cloud of ions (spherical–coulombic and
factor, or cylindrical–beam) with an effective radius
of rminavg. The value ofrminavg is set to the average
minimum distance between all currently flying ions.
PC SIMION updates this value at each time step. Thus
the effective radius of the ion clouds change as the
ions move about. The single exception is when factor
repulsion is set to 1.0. Then PCSIMION always uses
3.0 3 10211 mm (10 times the classical electron
radius) for the effective cloud diameter.

5.2.8. User programming capabilities
Perhaps the most powerful capability within PC

SIMION is user programming. User programming al-
lows the user to write subroutines that are uniquely
associated with a designated potential array in a RPN
calculator style language and have PCSIMION auto-
matically compile and incorporate these subroutines
into the ion flying process as ions pass through the
projected image of the potential array. A user pro-
gramming capability was first made available in
version 4.0 of the program. However, its implemen-
tation was limited, and the whole notion of user
programming was revisited in version 6.0.

Versions 6.0–7.0 user programs are defined in
terms of a collection of user written program seg-
ments that are contained within .PRG user program
files. Each .PRG file shares the name of the potential
array it supports. User program segments within a
.PRG file are selectively called by PCSIMION when-
ever an ion is within the projected instance of the
.PRG file’s associated potential array. PCSIMION

calculates a parameter (e.g. the length of the next time
step) and then passes this information, as well as other
ion state parameters, to a program segment of a given
name (e.g. Tstep_Adjust—if it exists in the .PRG file
for the potential array the ion is currently within). The
program segment then can examine the calculated
parameter (e.g. time step) and adjust its value as
required. Thus, PCSIMION now calculates something
first and then passes the result to a user program
segment (if it exists) for examination and modification
as appropriate. The seven allowed program segments

17D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

within a .PRG file can be used to monitor and control:
ion initial conditions, fast adjustable potentials, po-
tentials and gradients, integration time step, ion ac-
celerations, and the ion’s state including position,
velocity, mass, charge, color, death, and etc.

The expanded user program paradigm has added
considerable power and flexibility to PCSIMION. The
ability to vary potentials while ions are flying permits
simulations of the time varying potentials found in ion
traps, quadrupoles, TOF, and FTMS mass spectrom-
eters as examples. Issues such as viscous or colli-
sional effects can be simulated by including the
appropriate models in a user program segment. User
programs can also control the updating of potential
energy surfaces to graphically illustrate the undulating
nature of rf or other time varying fields. Fig. 11
demonstrates the observed ion mass shelling and
crystal patterns formed in an ion trap [7] when mutual
ion repulsion and viscous damping pressures are
simulated. Our group has employed user programmed
Monte Carlo simulations to analyze and develop
self-stabilizing charge compensation methods [8].
Impacts of chemical effects such as fragmentation and
neutralization can also be simulated. The implemen-
tation of user programming is sufficiently general that

PC SIMION is now capable of modeling the motions of
arbitrary objects in arbitrarily user defined fields with
user defined acceleration characteristics associated (or
unassociated) with these fields.

6. Version 7.0

Version 6.0 was released in 1995 at about the same
time as Windows 95. Although version 6.0 was a 32
bit extended memory MSDOS program, it was fully
functional with the beta versions of Windows 95 and
NT. However, Microsoft drew a line in the sand with
the actual release versions of Windows 95 and NT by
reducing DPMI (DOS protected mode interface) vir-
tual memory from 2 GB to 64 MB. This was a severe
constraint for larger potential arrays, and it became
clear that a Windows compatible version would be
needed. However, the intense effort required to create
version 6.0 had taken its toll, relegating the Windows
compatible version effort to a background activity.

6.1. GUI porting alternatives

At this juncture there were two alternative conver-
sion strategies: Convert PCSIMION to a fully Win32
compliant program with the classical Windows look
and feel, or port PCSIMION’s GUI into the Win32
environment and retain version 6.0’s look and feel.
On balance, it appeared it would be easier and better
to port version 6.0’s GUI into the Win32 environment
to retain its features such as keyboard accessible
buttons, numerical panel objects, and one button
windows with 3D pointing capabilities than to totally
rewrite PCSIMION in a full Windows paradigm.

The porting effort proved challenging because of
the many paradigm differences between the two GUIs
and the nonsymmetrical and inconsistent nature of the
Win32 GDI. Personal consternation aside, the effort
proved successful, and version 7.0 retains version
6.0’s GUI while running as a native Win32 applica-
tion in the Windows NT/9x environment. The re-
tained 6.0 GUI interface is in some ways superior to
Windows for applications similar toSIMION (as dis-
cussed previously). However, adopting the Win32

Fig. 11. User program simulation of ion crystal pattern formation
processes in an ion trap with vacuum pressures in the viscous
region. Ion crystal pattern shown in lower right. The pattern shown
contains ions of 100, 200, and 300 u. The two inner shells contain
the lightest ions, and the outer shell contains the heaviest ions.

18 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

platform permits access to useful features such as
Windows printers, clipboards, metafiles, TrueType
fonts for annotations, long file names, and video
accelerator cards. The integration of PCSIMION into
the Windows environment appears to mesh advan-
tages from each environment.

6.2. Larger arrays

Version 7.0, as in previous PCSIMION versions,
strives to couple its capability enhancements with the
capabilities of the current PC hardware and software.
Thus 7.0 can support 50 million point arrays (requir-
ing 500 MB of RAM) versus 6.0’s maximum of 10
million points. Virtual memory support has increased
to 2 GB, and access to physical RAM has increased
from 64 MB (version 6.0) to whatever is currently
installed in the computer (version 7.0). These in-
creases are consistent with the current availability of
PCs with more than 512 MB of RAM and hard drives
of over 10 GB capacity.

6.3. Ease of use and visualization enhancements

Features were added to help make the program
more useful and seamless to the user. Version 7.0 can
load (or save) ion optics bench definitions, associated
potential arrays, saved ion trajectory images, ion
definitions and data recording files together to help
simplify simulation setups. Cursor position can be
displayed in relative and absolute coordinates. The
annotator supports TrueType fonts and additional
capabilities such as arrows and dimensions.

The options in 7.0 for preferentially controlling the
display of ion trajectories versus recorded data have
been expanded to more efficiently support those
simulations where recorded data are more desirable
than visualized ion trajectories (e.g. external ion
injection into ion trap simulations).

An asymmetrically scaled 2D display capability
has been added to aid in visualizing ion focusing
regions in long beam lines. The two illustrations in
Fig. 12 demonstrate how asymmetrical scaling helped
elucidate the beam focusing characteristics of our
group’s PCSIMION designed univoltage ion gun [9].

The y scale in the upper illustration has been greatly
magnified to help resolve the ion gun’s focusing
characteristics.

6.4. Functional improvements

Potential array capabilities have been expanded to
allow fast proportional scaling of the potentials of
groups of electrode/pole points and fast voltage ad-
justment of other groups of points in the same
potential array. This allows proportional scaling ad-
justment of electrode/pole points that create gradient
fields (e.g. TOF reflectrons) while retaining the ability
to define individual fast adjust electrodes in the same
potential array.

Geometry files have received several new com-
mands (e.g. notin_inside and notin_inside_or_on) that
assist in defining more precise boundaries. These
commands can help to preserve dimensional accuracy
better when electrode geometry definitions are pro-
jected into arrays of different sizes.

User programming adds support for arrays and
data files that can be used to initialize and save array
data. A new user program segment has been added
(Init_P_Values) that can be used to fast adjust and/or
fast scale selected array potentials just before ions are
flown. This feature is more efficient than the Fast_Ad-

Fig. 12. Asymmetricalx andy scaling visualization option. The top
panel shows how increased magnification iny scaling can help
trajectory visualization. The lower panel shows an equalx and y
scaling view.

19D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

just program segment when these potentials do not
change while ions are actually flying. Additional
commands and reserved variables increase the span of
control the user can exert on what is displayed, what
is retained, and how certain calculations are per-
formed.

Data striations in the random number generator
used in PCSIMION versions (4.0–6.0) for certain user
programming applications were detected by Richard
Morrison of Monash University, Australia. Version
7.0 incorporates a new random-walk pseudorandom
generator that has passed extensive tests for random-
ness [10].

7. Complex instrument simulation example

PC SIMION versions 6.0 and 7.0 provide a quantum
improvement over previous PCSIMION versions for
complex simulations. Fig. 13 shows aSIMION 3D 7.0
cutaway view of the secondary beam line of Argonne
National Laboratory’s (ANL) SARISA (surface anal-
ysis by resonant ionization of sputtered atoms) instru-
ment. Igor Veryovkin et al. [11] of ANL have used a
version ofSIMION 3D 7.0 to model the entire instru-
ment. The goal of the ANL effort is to create a more
highly optimized instrument. The simulation includes
the entire instrument (both primary and secondary

beam lines) modeled using 21 array instances that
make extensive use of array variables in user pro-
grams to dynamically control electrode potentials as
the motions of ions and ionization of neutrals are
simulated. The array memory requirement for this
simulation is approximately 440 MB of RAM, and a
400 MHz Pentium II PC with 512 MB of RAM can
run entire simulations interactively in physical RAM.
This example serves to illustrate how the capabilities
of PC SIMION have progressed from its beginnings in
1986 as version 2.0.

8. Some tests of PCSIMION ’s accuracy

In the final analysis a simulation tool’s value is
determined by how accurately it simulates reality.
Many issues contribute to simulation accuracy includ-
ing: capabilities of the tool, how the problem was
simulated, and the user’s knowledge and understand-
ing of the issues involved.

The following material discusses how accurately
PC SIMION version 7.0 simulates a small collection of
problems where the correct answers are known from
first principles. Version 7.0 includes these tests in
directories with its other simulation demos. The phys-
ical constants used in version 6.0 and 7.0 are from the
74th edition of theCRC Handbook of Chemistry and
Physics[12]. Values of these physical constants (e.g.
c, electron mass, and elementary charge) are defined
to 8 or 9 significant place accuracy.

The ranges of fractional accuracy (abs((simula-
tion 2 expected)/expected)) determined from these
tests are summarized in Table 1. The span of frac-
tional accuracy is due to the collection of parameters
being tested as well as the impact of varying the
trajectory quality parameter, array density, and in
some cases the use of analytical expressions for
known fields. The descriptions of each series of tests
contain the assumptions and the range of ways the
simulations were conducted. Moreover, these tests
clearly illustrate how simulation details can impact
accuracy.

Fig. 13. PCSIMION 7.0 Simulation of Argonne National Laborato-
ry’s SARISA (surface analysis by resonant ionization of sputtered
atoms) instrument.

20 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

8.1. Conversions between kinetic energy and
velocity

The first simple test involves flying an electron
with a relativistic kinetic energy equal to its rest mass
and a proton with a nonrelativistic kinetic energy of 1
eV through one meter of field free space. The test
evaluates the conversion of initial kinetic energy into
relativistic (Table 2) and nonrelativistic (Table 3)
velocities, measuring the time of flight through a
field-free meter of space, and then converting the veloc-
ities back to kinetic energies at the one meter exit point
(splat). Each table compares the simulation values with
the values expected from first principles. Agreement is
within one part in the eighth significant place.

8.2. Ion acceleration in linear electrostatic potential
gradients

The second test series covers ion accelerations in
electrostatic potential arrays with linear potential

gradient fields. The first test is a nonrelativistic cross
acceleration of a 100 u ion. The ion has an initial
kinetic energy of 20 eV in the2y direction. It is
accelerated 50 mm in the1x direction by a 1 V/mm
gradient electrostatic field. The ion’s final velocity in
the x direction (9.822 693 45 mm/ms) is within one
part in the eighth significant place from thex velocity
expected [vxexpected5 sqrt(2aexpecteds), where aex-

pected5 force/mass value ands 5 50 mm]. The final
kinetic energy fromvx and vy (6.999 999 913 101

eV) is within one part in the eighth significant place of
its expected value.

The next test is linear relativistic acceleration of an
electron (initially at rest) across a potential difference
equal to one electron rest mass (501 999.06 eV). The
final velocity (2.596 278 843 105 mm/ms) is within
one part in the ninth significant place of the expected
value. A cross relativistic acceleration test uses three
electrons with initial kinetic energies in2y of 1, 3,
and 7 electron rest masses and accelerates them by
one electron rest mass (501 999.06 eV) in thex
direction. The electrons’ calculated final kinetic ener-
gies (1.021 998123 106, 2.043 996 193 106,
and 4.087 992 003 106 eV) and speeds are all
better than one part in the seventh place of the
expected values.

8.3. Conservation of energy in discontinuous linear
gradient reflection fields

A linear potential gradient reflection field is used to
test conservation of energy with velocity reversals and
crossing ideal grid discontinuities (Fig. 3). An ion
started with a given kinetic energy inx halfway up a
linear trough field iny (ystart 5 25 mm) oscillates
along the trough formed by two electrodes (set to

Table 2
Tests of relativistic conversions between kinetic energy and velocity

Relativistic electron tests From simulation
Expected from first
principles

Fractional
error

Kinetic energy (KE) to velocity
(KE 5 5.109 990 63 105 eV)

2.596 278 833 105 mm/ms 2.596 278 843 105 mm/ms 4 3 1029

Time of flight (d 5 1000 mm) 3.851 666 433 1023 ms 3.851 666 413 1023 ms 5 3 1029

Convert velocity to KE at splat 5.109 990 563 105 eV 5.109 990 63 105 eV 8 3 1029

Table 1
Summary of PCSIMION accuracy tests, where the fractional
error 5 abs[(simulated2 expected)/expected]

Test Description
Fractional
error range

9.1 Conversions between kinetic energy
and velocity

1028–1029

9.2 Ion acceleration in linear electrostatic
potential gradients

1027–1029

9.3 Conservation of energy in
discontinuous linear gradient
reflection fields

1027–1028

9.4 Magnetic and electrostatic radii of
refraction

1026–1028

9.5 rf conservation of energy 1025–1028

9.6 Cylindrical electrode field orbits 1024–1027

9.7 Ion motions in a static quadrupole field 1024–1029

21D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

equal potentials) and a center ideal grid (grounded).
After 14 cycles the ion y max (ycycle 14 5
2.499 999 33 101 mm) is within one part in the
seventh significant place of its startingy location (25
mm), and its time of flight is within one part in the
eighth significant place of the expected value.

8.4. Magnetic and electrostatic radii of refraction

Ions with velocities normal to a static magnetic
field have circular trajectories. The magnetic radius of
refraction is:rn 5 mv/(Bne). Wherern is the mag-
netic radius of refraction,m is the ion’s relativistic
mass, v is its velocity, Bn is the magnetic field
intensity normal tov, ande is the charge on the ion.
Orbital diameters and orbital frequencies are calcu-
lated for a 10 000 G field normal to velocity of three
test ions: A relativistic electron with one rest mass of
kinetic energy, a proton with 1.0 keV of kinetic
energy, and a 100 u ion with 100 eV of kinetic energy.
The orbital diameters (5.904 597 779, 9.138 793 39,
and 2.879 482 213 101 mm) and the orbital frequen-
cies (1.399 623 273 1010, 1.524 516 523 107, and
1.535 611 333 105 s21) are all within one part in the
sixth significant place of their expected values. In-
creasing the trajectory quality parameter from 3 to
103 improves the accuracy to better than one part in
the eighth significant place.

The electrostatic radius of refraction is:rn 5
mv2/(2Ene). Wherern is the electrostatic radius of
refraction, m is the ion’s relativistic mass,v is its
velocity, En is the electrostatic field intensity normal
to v, ande is the charge on the ion. This test employs
a trick. A user program automatically applies a 40 000
V/mm gradient normal to the ion’s current velocity
vector (would that we could create such fields). Four

test ions are used: a relativistic electron with one rest
mass of kinetic energy, a 1 u negative ion with an
electron’s rest mass of kinetic energy, a 100 u ion
with a kinetic energy of 40 000 eV, and a 10 000 u ion
with a kinetic energy of 40 000 eV.

The orbital diameter estimates (3.832 497 523
101, 5.108 590 173 101, 3.999 999 16, and
4.000 000 00 mm) and the orbital frequency esti-
mates (2.156 351 863 109, 6.184 806 073 107,
2.210 882 553 107, and 2.210 882 743 106 s21)
are all better than 1 part in the sixth significant place of
their expected values. Increasing the trajectory quality
parameter from 3 to 103 improves the accuracy to better
than one part in the eighth significant place.

8.5. rf conservation of energy

In this series of tests a 100 V rf cosine wave and an
80 V rf square wave of a frequency of 140 000 Hz are
impressed between two parallel plate electrodes 80
mm apart iny (e.g. Vp1 5 100 coswt and Vp2 5
2100 coswt). If an ion materializes near one of the
plates flying in thex direction at the instant that the rf
cosine wave’s potential peaks or in the center of the rf
square wave’s peak at a potential that attracts the ion
to the opposite plate (e.g.t 5 0), the ion will follow
a periodic trajectory between the plates (providing the
ion’s excursion distance does not cause it to hit one of
the plates).

For the rf cosine wave:a 5 k(cos wt)/m, v 5
k(sin wt)/(mw), ands 5 2k(coswt)/(mw2). Where
a is acceleration,v 5 velocity, s 5 displacement,m
5 mass,w 5 angular frequency, andk includes the
potential and scaling factors. The expected quarter
cycle (wt 5 p/ 2) displacement isr 5 k/(mw2), and
the expected peak to peak value isDy 5 2r . The

Table 3
Tests of nonrelativistic conversions between kinetic energy and velocity

Nonrelativistic proton tests From simulation Expected from first principles Fractional error

Convert KE to velocity
(KE 5 1.0 eV)

1.384 112 043 101 mm/ms 1.384 112 033 101 mm/ms 7 3 1029

Time of flight (d 5 1000 mm) 7.224 848 653 101 ms 7.224 848 693 101 ms 6 3 1029

Velocity to KE at splat 9.999 999 983 1021 eV 1.0 eV 23 1029

22 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

simulation test uses a collection of ions with masses
ranging from 10 to 50 000 u.Dy (peak to peak) for
each of these ions vary from one part in the fifth
significant place for the 50 000 u ion to one part in the
eighth significant place for the 10 u ion. If the value of
the trajectory quality parameter is increased from 3 to
103 all estimates are better than one part in the eighth
significant place when compared to expected values.

For the rf square wave:s 5 at2/ 2 5 2kt2/m.
Where a 5 acceleration, t 5 time, s 5 displace-
ment, m 5 mass, andk includes the potential and
scaling factors. The expected quarter cycle displace-
ment isr 5 kt1/4

2 /m, and the expected peak to peak
value isDy 5 2r . In order to obtain the properDy
estimates the trajectory algorithms must automatically
detect the square wave transition to initiate the binary
boundary approach. The simulation test uses a collec-
tion of ions with masses ranging from 10 to 50 000 u.
The accuracy of theDy estimate (peak to peak) for
these ions vary from one part in the sixth significant
place for the 50 000 u ion to one part in the eighth
significant place for the 10 u ion. If the value of the
trajectory quality parameter is increased from 3 to 103
all estimates are better than one part in the eighth
significant place when compared to expected values.

The reason that raising the value of the trajectory
quality parameter improved theDy estimates for
higher mass ions is that values above 100 for the
trajectory quality parameter shorten the distance time
step and also reduce the binary boundary approach
limits. Since the high mass ions move fewer grid units
in y, a higher value for the trajectory quality param-
eter increases the number of time steps used and
forces tighter control of velocity reversals.

8.6. Cylindrical electrode field orbits

The next series of tests involve the simulation of an
ion orbiting between two cylindrical electrodes. The
electrostatic potential between the electrodes is:Vr 5
Vr1 1 k ln (r /r1). WhereVr is the field potential atr ,
Vr1 is potential atr1, r1 is the radius of the inner
electrode,r is the desired radius value, andk is scaled
to give the potential of the outer cylindrical electrode
whenr 5 r2{the inner radius of the outer electrode:

k 5 [ln (r2/r1)]/(Vr2 2 Vr1)}. The test involves
launching a nonrelativistic ion on an orbital trajectory
from midpoint (r 5 300 mm) between the two cy-
lindrical electrodes. The ion’s initial kinetic energy
equals that required for a perfect circular orbit in an
ideal analytical field. After 1/2 orbit the ion’s current
orbital radius is compared to its starting radius.

The first series of tests make use of 2D planar
arrays with mirroring inx and y to simulate the
cylindrical electrodes. A 2D planar array of 1033
103 points inx andy gives a 1/2 orbit radius estimate
of 300.138 221 mm (300 mm expected) that is within
1 part in the fourth significant place. Using a larger
2D planar array of 8213 821 points inx andy gives
a 1/2 orbit radius estimate of 300.015 655 9 mm
(approximately 1 part in the fifth significant place).

The second series of tests make use of 2D cylin-
drical arrays withy mirroring (surfaces of revolution)
to simulate the cylindrically concentric field. A 2D
cylindrical array of 26x by 103y points gives a 1/2
orbit radius of 299.988 169 mm (one part in the fifth
significant place). A really enormous 2D cylindrical
array of 801x 3 3281y points gives a 1/2 orbit
radius of 299.999 959 mm (or one part in the seventh
significant place).

A third test makes use of a user program to provide
the analytically correct field gradients into the trajec-
tory computations. The resulting 1/2 orbit radius of
300.000 035 mm is accurate to within one part in the
seventh significant place of the expected value.

These tests point out that larger arrays model fields
more accurately. Moreover, choosing an array that
matches the problem’s symmetry can also help im-
prove field estimates. However, user programs can
offer higher quality ion trajectory estimates when the
field is known analytically.

8.7. Ion motions in a static quadrupole field

The final series of tests simulate flying ions within
a static quadrupolar field. The electrostatic potential
of a quadrupolar field is:Vxy 5 Vxpole(x2 2 y2)/r0

2.
WhereVxy is the potential at pointx, y, Vxpole is the
potential of thex direction hyperbolic electrodes,x

23D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

and y are the offsets from the center of the quadru-
pole, andr0 equals radial offset of the hyperbolic
electrodes from the center of the field. The tests
involve flying three ions of varying initial kinetic
energies from the center of the quadrupole up an
electrostatic hill toward the positivex electrode. The
tests measure thexmax when the ion’s velocity re-
verses, and the time of flight to velocity reversal (the
1/4 cycle time).

The first simulation used a large 2D planar poten-
tial array of1200x and 1200y points with mirroring
in x andy. Table 4 compares the expectedxmaxvalues
to those obtained from the first simulation. These
estimates were within two parts in the fourth signifi-
cant place. Because the ion motions in a static
quadrupolar field are sinusoidal, the expected 1/4
cycle times should be the same for all ions:
6.193 482 464ms. Table 5 compares the expectedt1/4

times to those obtained from the first simulation.
In a second simulation, user programs were em-

ployed to provide the analytically correct fields to the
trajectory algorithms. In this case thexmax estimates
were within one part in the ninth significant place and
the estimated 1/4 cycle times were within one part in
the eighth significant place.

9. Reality of simulations

It has been my personal experience that simula-
tions can only be as good as the understanding that
goes into them (e.g. garbage in garbage out). Tools
such as PCSIMION should not be used in blind faith.
Just because a few ions manage to get through does
not mean the design is acceptable.

Questions similar to the following should be asked
when evaluating a simulation effort. Do the range of
initial conditions of the test ions accurately represent
the range of expected initial conditions for the actual
ions? Do ion trajectories change significantly when
higher values of the trajectory quality parameter are
specified, when potential array sizes are increased
(doubled), or when arrays are refined to a lower error
value? Does reverse flying ions back from their
termination point demonstrate a comfortable level of
internal consistency? Does the simulation of analyti-
cally known fields via user programs yield signifi-
cantly different results from using refined potential
arrays?

It is important to understand the physics of the
problem and the implications of the chosen simulation
strategy. Do not assume the simulation tool thinks for

Table 4
Expected vs. simulation values ofxmax at velocity reversals

x at velocity reversal Ion one’sxmax (mm) Ion two’s xmax (mm) Ion three’sxmax (mm)

Expected values
from first
principles

70.710 678 12 50.000 000 0 25.000 000 0

From first simulation 70.698 767 30 49.991 027 7 24.995 445 7
Fractional error 23 1024 2 3 1024 2 3 1024

Table 5
Expected vs. simulation values for time to velocity reversals (t1/4 5 1/4 cycle times)

t1/4 at velocity reversal Ion one’st1/4 (ms) Ion two’s t1/4 (ms) Ion three’st1/4 (ms)

Expected values from
first principles

6.193 482 46 6.193 482 46 6.193 482 46

From first simulation 6.192 522 79 6.192 388 39 6.192 354 83
Fractional error 23 1024 2 3 1024 2 3 1024

24 D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

you! Although the results of the simulations may be
very exciting, wait until the design is built and tested
successfully before declaring victory. Always be sus-
picious!

10. Future directions for PC SIMION

PC SIMION has always been a part-time one-man
effort with the attendant irregular rates of progress.
Thus the PCSIMION effort must be viewed as a work in
progress with each successive version being the next
chapter in the saga. Unfortunately, one’s horizon
expands with each new version, as does the list of
desirable new capabilities. Three general areas are
currently on the list to be addressed in future versions
of PC SIMION.

The first area of interest is in expanding the user’s
ability to program PCSIMION to perform more com-
plex tasks. This will probably manifest itself in some
form of job control language with hooks and other
program extensions that allow tasks such as defining
array geometry, refining, and ion flying to be more
automated and integrated. If successful, a future
version of PCSIMION could be able to perform tasks
such as optimizing electrode geometry under user
programmed control.

The second is in adding simulation methods to the
program to improve its modeling of complex elec-
trode shapes. Version 6.0 was designed to support, at
least in principle, multiple modeling methods. The
modeling of field emission sources and the higher
accuracy modeling of complex electrode shapes will
require the addition of some form of a flexible mesh
style modeling method that hopefully can be fully
integrated into the program’s current visualization and
operating paradigms.

The third would be to add full Poisson space
charge simulation capability to a future version of PC
SIMION. Accurate modeling of space charge effects is
very dependent on using truly representative collec-
tions of simulation ions and on accurate field deter-

minations in the ions’ low kinetic energy regions (e.g.
near emission surfaces). Thus this effort will probably
wait until significant accomplishments have been
made in the first two areas.

11. Conclusions

PC SIMION has certainly changed over its 15 years
of development (or obsession). However, the experi-
ence has been challenging and a lot of fun (particu-
larly versions 6.0 and 7.0). My only personal disap-
pointment has been that later versions of PCSIMION

have been commercialized instead of freely shared
with the community in the tradition of Don McGil-
very’s SIMION. However, it is rewarding to see one’s
efforts widely used by others to advantage in their
endeavors.

References

[1] D.A. Dahl, J.E. Delmore, A.D. Appelhans, Rev. Sci. Instrum.
61 (1990) 607.

[2] D.C. McGilvery, Proceedings of the 46th ASMS Conference
on Mass Spectrometry and Allied Topics, May 31–June 4,
1998, Orlando, Florida.

[3] P.J. Todd, private communication (2000).
[4] G.E. Forsythe, W.R. Wasow, Finite-Difference Methods for

Partial Differential Equations, Wiley, New York, 1960.
[5] R.W. Hornbeck, Numerical Methods, Quantum, New York,

1975.
[6] A.D. Appelhans, D.A. Dahl, J.E. Delmore, Anal. Chem. 62

(1990) 1679.
[7] R.F. Wuerker, H. Shelton, R.V. Langmuir, J. Appl. Phys. 30

(1959) 342.
[8] D.A. Dahl, A.D. Appelhans, Int. J. Mass Spectrom. Ion

Processes 178 (1998) 187.
[9] D.A. Dahl, A.D. Appelhans, Int. J. Mass Spectrom. Ion

Processes 189 (1999) 39.
[10] D.A. Dahl, C.L. Atwood, R.A. La Violette, Appl. Math.

Model. 24 (2000) 771–778.
[11] Proceedings of the Twelfth International Conference on Sec-

ondary Ion Mass Spectrometry, SIMS XII, Sept. 5–10, 1999,
University Catholique de Louvain, Brussels, Belgium,
Elsevier, New York, 2000, p. 237.

[12] Handbook of Chemistry and Physics, D.R. Lide (Ed.), 74th
ed. CRC Press, Boca Raton, FL, 1993.

25D.A. Dahl/International Journal of Mass Spectrometry 200 (2000) 3–25

